Writing a Hiring Algorithm

Scenario: Moogle’s Hiring Filter

Imagine you are working for Moogle, a well-known tech company that receives
tens of thousands of job applications from graduating seniors every year.

Since the company receives too many job applications for HR to individually
assess in a reasonable amount of time, you are asked to create a program that
algorithmically analyzes applications and selects the ones most worth passing
onto HR.

Applicant Data

It’s difficult to create these first-pass cuts, so Moogle designs their application
forms to get some numerical data about their applicants’ education. Job appli-
cations must enter the grades they received in 6 core CS courses, as well as their
overall GPA. For your convenience, this will be stored in a python list that
you can access. For example, a student who received the following scores. . .

e Intro to CS: 100

e Data Structures: 95

o Software Engineering: 80

e Algorithms: 89

e Computer Organization: 91
e Operative Systems: 75

e Overall GPA: 83

. would result in the following list: [100, 95, 80, 89, 91, 75, 83]. You
can assume that index 0 is always Intro to CS, 1 is always Data Structures, and
SO om.

Because you are processing many applications, your program will receive a list
of lists. For example, this would be the information for 3 applicants:

[[100, 95, 80, 89, 91, 75, 83], [75, 80, 85, 90, 85, 88, 90],
(85, 70, 99, 100, 81, 82, 91] 1]

Your Task

Your job is to:

1. Determine how you are going to select the top applicants to pass onto HR.
2. Given a list of applicant data (a list of lists), write a function returns a
new list of worthwhile candidates.

Your Code

To get you started, we’re provided some template code:

e hiring.py a template where you will write your applicant-selection algo-
rithm based on a small set of dummy data.

e lottaApps.py a module that contains a list of ten-thousand randomly
generated applicants you can try once you have completed your code.

In hiring.py, you will be writing a series of predefined analyze_applicant
methods which apply different criteria to applicants. Through this process, you
will not only get a sense of the tradeoffs of different criteria, but also get practice
writing various for loops. (Note: this is meant to give you practice with for
loops, so don’t use python’s built in functions such as sum() or min())

Complete the following methods:

e analyze_applicantl accepts applicants that have an overall GPA above
80. (Does not need a for loop)

e analyze_applicant?2 accepts applicants that have no grade below 65.

e analyze_applicant3 accepts applicants that have at least 4 grades above
85.

o analyze_applicant4 accepts applicants that have an average above 85.

After writing, testing, and considering the tradeoffs of these four methods, write
your own criteria in your_analysis.

Questions you should answer:

1. What criteria did you choose to select finalists? How did you choose that
criteria?

2. Roughly what percentage of applicants does your algorithm pass on as
finalists? Is that enough? If Moogle asked you to take a more aggressive
approach with your algorithm, are there any tradeoffs?

code/hiring.py
code/lottaApps.py

	Writing a Hiring Algorithm
	Scenario: Moogle's Hiring Filter
	Applicant Data
	Your Task
	Your Code
	Questions you should answer:

